The Value of Online Adaptive Search: A Performance Comparison of NSGAII, ε-NSGAII and εMOEA

نویسندگان

  • Joshua B. Kollat
  • Patrick M. Reed
چکیده

This paper demonstrates how adaptive population-sizing and epsilon-dominance archiving can be combined with the Nondominated Sorted Genetic Algorithm-II (NSGAII) to enhance the algorithm’s efficiency, reliability, and ease-of-use. Four versions of the enhanced Epsilon Dominance NSGA-II (ε-NSGAII) are tested on a standard suite of evolutionary multiobjective optimization test problems. Comparative results for the four variants of the εNSGAII demonstrate that adapting population size based on online changes in the epsilon dominance archive size can enhance performance. The best performing version of the ε-NSGAII is also compared to the original NSGAII and the εMOEA on the same suite of test problems. The performance of each algorithm is measured using three running performance metrics, two of which have been previously published, and one new metric proposed by the authors. Results of the study indicate that the new version of the NSGAII proposed in this paper demonstrates improved performance on the majority of two-objective test problems studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-objective transportation network design: Accelerating search by applying ε-NSGAII

The optimization of infrastructure planning in a multimodal passenger transportation network is formulated as a multi-objective network design problem, with accessibility, use of urban space by parking, operating deficit and climate impact as objectives. Decision variables are the location of park and ride facilities, train stations and the frequency of public transport lines. For a real life c...

متن کامل

Memory-based adaptive partitioning (MAP) of search space for the enhancement of convergence in Pareto-based multi-objective evolutionary algorithms

A new algorithm, dubbed memory-based adaptive partitioning (MAP) of search space, which is intended to provide a better accuracy/speed ratio in the convergence of multi-objective evolutionary algorithms (MOEAs) is presented in this work. This algorithm works by performing an adaptive-probabilistic refinement of the search space, with no aggregation in objective space. This work investigated the...

متن کامل

How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?

This study provides a comprehensive assessment of state-of-the-art evolutionary multiobjective optimization (EMO) tools’ relative effectiveness in calibrating hydrologic models. The relative computational efficiency, accuracy, and ease-of-use of the following EMO algorithms are tested: Epsilon Dominance Nondominated Sorted Genetic AlgorithmII (ε-NSGAII), the Multiobjective Shuffled Complex Evol...

متن کامل

Interval-based Solar PV Power Forecasting Using MLP-NSGAII in Niroo Research Institute of Iran

This research aims to predict PV output power by using different neuro-evolutionary methods. The proposed approach was evaluated by a data set, which was collected at 5-minute intervals in the photovoltaic laboratory of Niroo Research Institute of Iran (Tehran). The data has been divided into three intervals based on the amount of solar irradiation, and different neural networks were used for p...

متن کامل

Hybrid Pareto archived dynamically dimensioned search for multi-objective combinatorial optimization: application to water distribution network design

Pareto archived dynamically dimensioned search (PA-DDS) has been modified to solve combinatorial multi-objective optimization problems. This new PA-DDS algorithm uses discrete-DDS as a search engine and archives all non-dominated solutions during the search. PA-DDS is also hybridized by a general discrete local search strategy to improve its performance near the end of the search. PA-DDS inheri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004